Understanding Econometrics (Registro n. 3511)

006 - Campo Fixo - Material Adicional
fixed length control field a|||||r|||| 00| 0
007 - Campo Fixo - Descrição Física
fixed length control field ta
008 - Campo de Tamanho Fixo
Campo fixo de controle local 220519b2005 us d|||gr|||| 001 0 eng u
020 ## - ISBN
ISBN 0030348064
040 ## - Fonte da Catalogação
Fonte de catalogação BR-BrCADE
090 ## - Número de Chamada
Localização na estante 330.015195 H157u
Cutter H157u
100 1# - Autor
Autor HALCOUSSIS, Dennis
245 10 - Titulo Principal
Título principal Understanding Econometrics
260 ## - Local, Editora e Data
Cidade Mason, Ohio:
Editora Thompson South-Western,
Data 2005.
300 ## - Descrição Física
Número de páginas 332 p.
Ilustração il.
505 ## - Conteúdo
Conteúdo Preface<br/><br/>Chapter 1 An Introduction to Ordinary Least Squares <br/>1-1 You AIready Use Econometrics Every Day <br/>1-2 A Simple Regression Model: Collecting DVDs <br/>A Theoretical Regression Line <br/>The Error Terrn <br/>The Theoretical Regression Line Cannot Be Observed: It Must Be Esti,nared <br/>1-3 Ordinary Least Squares: The Best Way to Draw the Line <br/>Finding the OLS Slope and Intercept Estimates <br/>8 Total, Explained and Residual Sum of Squares <br/>Summary <br/>Exercises <br/>1-4 Appendix: Deriving OLS Estimates for a Simple Regression Model <br/><br/>Chapter 2 Ordinary Least Squares, Part 2 <br/>2-1 Multiple Regression Modeis: What Do the B's Mean? <br/>Estimating and Interpreting a Multiple Regression Model<br/>Degrees of Freedom<br/>2-2 Assumptions of the Classical Linear Regression Model <br/>2-3 Characteristics of Ordinary Least Squares <br/>Sampling Distribution of OLS Slope Estimates <br/>Properties of Estimators <br/>Gauss-Markov Theorem <br/>Estimating Variances lar me Error Term and Slope Estimates <br/>Summary <br/>Exercises<br/> <br/>Chapter 3 Commonly Used Statistics for Regression Analysis <br/>3-1 Hypothesis Testing: Do My Estimates Matter?<br/>Randon Samples <br/>Hypothesis Testing <br/>The Null and Alternative Hypotheses<br/>One-and Two-Sided Tests <br/>Levels of Significance <br/>3-2 Conducting a t-Test<br/>Critical Values and Decision Rules <br/>p-Value<br/>Confidence Intervals<br/>Statistical Significance Can Be Trivial<br/>3-3 F-Test of All Independent Variables<br/>3-4 Goodness of Fit: How Well Does It Work?<br/>R2<br/>Adjusted R2 <br/>Summary <br/>Exercises <br/><br/>Chapter 4 Basics in Conducting Econometric Research <br/>4-1 Choosing a Topic <br/>4-2 The Literature Review: What's Been Done Already<br/>4-3 Determining the Dependent and Independent Variables<br/>Change Is Good: Variables Should Vary<br/>Tautologv: A Perfect but Useless Regression <br/>Adjusting Time-Series Variables for Inflation <br/>Adjusting Cross-Section Variables for Population Size <br/>Variable Definitions and Slope Estimates<br/>When Independent Variables Are Omitted<br/>When Extra Independent Variables Are Added <br/>4-4 Objectivity in Econometrics<br/>4-5 Finding and Using Data<br/> Outliers <br/>4-6 Writing About Your Research<br/> Summary <br/> Exercises <br/><br/>Chapter 5 Additional Modeling Techniques <br/>5-1 Dummy Variables Aren't Stupid: When a Variable Is Not a Number <br/>Intercept Dummies <br/>Professional Wrestling Needs Dummies <br/>The Dummy Variable Trap: Alwavs Leave an Escape Route <br/>Seasonal Retail Sales Model <br/>Slope Dummies <br/>5-2 Interaction Variables Can't Leave Each Other Alone<br/>5-3 Designing Your Own F-Test <br/>F-Test Your Way to Riches <br/>Chow test: Testing for Identical Twin Regressions <br/>Gasoline Revenue and OPEC <br/>5-4 Polynomial Models: Curves Can Be Linear Regressions <br/>Sports Car Production Costs <br/>5-5 Log Models: Estimating Elasticities<br/>The Double-Log Model <br/>Estimating the Price Elasticity of Demand for Compact Discs<br/>The Semi log Model <br/>Summary <br/>Exercises <br/><br/>Chapter 6 Multicollinearity: When Independent Variables Have Relationships <br/>6-1 The Illness <br/>6-2 The Symptoms <br/>6-3 Measunng Multicollinearity <br/>Correlation Coefficients <br/>Regress One Independent Variable on Another <br/>Variance Inflation Factor <br/>6-4 Treating Multicollinearity <br/>Leave the Model Alone <br/>Eliminate an Independent Variable <br/>Redesign the Model <br/>Increase the Sample Size <br/>Summary <br/>Exercises <br/><br/>Chapter 7 Autocorrelation: A Problem with Time-Series Regressions<br/>7-1 The Illness <br/>7-2 The Symptoms <br/>7-3 Testing for the Illness: The Durbin-Watson Statistic <br/>7-4 Treating the Disease <br/>7-5 Treating the Symptoms <br/>The Cochrane-Orcutt Method<br/>The AR(1) Method <br/>Summary <br/>Exercises <br/><br/>Chapter 8 Heteroskedasticity: A Problem with Cross-Section Regressions<br/>8-1 The lllness <br/>8-2 The Symptoms <br/>8-3 Testing for the Illness: The Park Test and the White Test <br/>The Park Test <br/>The White Test <br/>8-4 Treating the Disease <br/>8-5 Treating the Symptoms <br/>Weighted Least Squares <br/>Correcting Standard Errors and t-Statistics for Heteroskedaricity <br/>Summary <br/>Exercises <br/><br/>Chapter 9 Pooling Data Across Time and Space <br/>9-1 Mixing the Data: Differences between Time and Space Disappear <br/>9-2 Seemingly Unrelated Regressions Are Actually Related <br/>9-3 The Fixed Effects Model: Everyone Deserve a Different Intercept <br/>9-4 The Random Effects Model: They All Make Their Own Errors <br/>9-5 A Comparison of SUR. Fixed Effects and Random Effects<br/>Summary <br/>Exercises <br/><br/>Chapter 10 Simultaneous-Equation Systems: When One Equation Is<br/>Not Enough <br/>10-1 A Two-Equation Model for Pizza <br/>10-2 The Identification Problem: How to Tell Supply from Demand <br/>The Order Condition<br/>10-3 Ordinary Least Squares Has Issues with Simultaneity <br/>10-4 Checking for Simultaneity with the Hausman Test <br/>10-5 Instrumental Variables: An Alternative for a Problem Variable <br/>Measurement Error <br/>10-6 Two-Stage Least Squares: An Orderly Approach to Instrumental<br/>Variables <br/>Summary <br/>Exercises <br/><br/>Chapter 11 Time-Series Models: Using the Past to Consider the Future <br/>11-1 Estimating Distributed Lag Models <br/>Distributed Lag Models <br/>The Koyck Lag Model <br/>Koyck Lag Models with Autocorrelation <br/>11-2 Autoregressive and Moving Average Models: Errors That Last Over Time <br/>Autoregressive Models <br/>Moving Average Models <br/>Auroregressive Moving Average Models <br/>11-3 Stationary Versus Nonstationary Series: Unit Roots Can Be Hard to Kill <br/>Keeping a Nonstationary Variable in Its Place <br/>Cointegration <br/>11-4 Forecasting: There Is No Crystal Ball <br/>Confidence Intervals for Forecasts <br/>Evaluating Forecasts <br/>Forecasting with Autocorrelation <br/>Forecasting with Simultaneous-Equation Models <br/>11-5 Testing for Causality: What Came First: the Chicken or the Egg? <br/>Summary <br/>Exercises <br/>11-6 Appendix: The Math Behind the Koyck Lag Model <br/><br/>Chapter 12 Qualitative Choice Models: The Dependent Variable Is a Dummy <br/>12-1 Binary Choice: The Dependent Variable Is O or 1 <br/>Linear Probability Model <br/>Probit<br/>Logit<br/>12-2 Multiple Choice: More than Two Possible Answers <br/>A Linear Probability Model for More than Two Choices <br/>Multinomial Logit <br/>12-3 An Overview of Censored and Truncated Data: Observations<br/>You Can't See Can Hurt You <br/>Censored Data <br/>Truncated Data <br/>Summary <br/>Exercises<br/>Chapter 13 Econome-"tricks": Misleading Uses of Econometrics <br/>13-1 Statistical Significance Does Not Prove Causality: Hendry's Theory of Inflation <br/>13-2 Different Combinations of Independent Variables Can Give Contradictory Results <br/>13-3 Extrapolation Can Stretch Things Too Far <br/>13-4 Connecting the Dots: Forcing the Regression Line to Fit the Data <br/>13-5 Small Sample Sizes Don't Give You Much Information <br/>13-6 Self-Selection: Individual Choice Determines Who Is in the Sample <br/>13-7 "Truth-in-Advertising" Is the Key to Honest Econometrics <br/>13-8 A Table of Econometric Situations and Problems <br/>Sumrnary <br/>Exercises <br/>Glossary <br/>Appendix of Statistical Tables<br/>Index <br/><br/><br/>
650 #0 - ASSUNTO
9 (RLIN) 2195
Assunto Econometria
942 ## - Elementos de Entrada Adicionados
Tipo de Material Livros
Exemplares
Classificação Empréstimo Locação permanente Locação corrente Data de aquisição Forma de aquisição Patrimônio Número completo de chamada Código de barras Número do exemplar Data de inserção do exemplar Tipo de item no Koha
    Biblioteca Agamenon Magalhães Biblioteca Agamenon Magalhães 2022-05-19 Doação 26344 330.015195 H157u 2022-0044 1 2022-05-19 Livros
    Biblioteca Agamenon Magalhães|(61) 3221-8416| biblioteca@cade.gov.br| Setor de Edifícios de Utilidade Pública Norte – SEPN, Entrequadra 515, Conjunto D, Lote 4, Edifício Carlos Taurisano, térreo